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Introduction:

The supply of rice, a staple food for half of the world’s population and the primary source of income and

employment of one-fifth of the global population, is therefore strongly determined by small farmers’

incentives for rice production. More than 200 million small farmers with an average of less than 1

hectare of land produce 90% of the total rice in the world (Tonini & Cabrera, 2011). Small farm

households are believed to face a lower opportunity cost of labour than large farm households (Carter &

Wiebe, 1990; Hunt, 1979; Sen, 1966). In Bangladesh, rice is the staple food of 149.8 million people and

supplies 76% of the total calorie intake and more than 65% of the protein intake of the people (Dey,

Miah, Mustafi, & Hossain, 1996). The agricultural sector is also characterized by the traditional

subsistence small-scale farming. This country has shortage of all factors of production except labour,

obviously cannot afford to make an inefficient use of resources. It is therefore important to estimate the

level of technical efficiency at the farm-level, and to identify the sources of such efficiency and

inefficiency. Such information is important for formulating appropriate policies for reducing the level of

technical inefficiency. Measurement of technical efficiency could also help decide whether to improve

efficiency first or develop a new technology in the short run. Technical efficiency is used as a measure of

a farm's ability to produce maximum output from a given set of inputs under certain production

technology.

Farm efficiency is examined by comparing the economic efficiencies of various types of farm holders

(landless, marginal, small, medium and large). The majority of studies of agricultural productivity in

developing countries support the view that there is an inverse relationship between productivity and

farm size (Berry and Cline, 1979; Barrett, 1996). The relationship between farm size and efficiency is

found to be non-linear, with efficiency first falling and then rising with size (Helfan et.al., 2004). High

technical efficiency will not only enable farmers to increase the employment of productive resources,

but it will also give a direction of adjustments required in the long run to increase food production. This
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present paper examines technical efficiency with emphasis on farm size in Bangladesh in order to

suggest the ways to increase the levels of rice production in Bangladesh. Previous studies in Asia have

tested for relative efficiency differences by farm size, with conflicting results. Lau and Yotopoulos, 1971

and Yotopoulos and Lau, 1973 found that small wheat farms in the Indian Punjab were more technically

efficient than large farms. In Pakistan, Khan and Maki (1979) found that large farms are more technically

efficient than small farms. In Cote d’Ivoire, Adesina and Djato, 1996 found no differences in the

technical efficiency of small and large farms. Onyenweaku, 1997 examined the technical efficiencies of

two groups of farms in Kaduna state, Nigeria. The results showed higher level of technical efficiency for

large scale farms. The above results on relative technical efficiency suggest the need to avoid

generalizations in this regard as what obtains in one country may not follow in another country due to

differences in agricultural and institutional settings. The definition of farm size has been variable in the

efficiency literature, as what is considered “large” or “small” is relative depending on the agricultural

system settings. In Pakistan agriculture, Khan and Maki, 1979 classified large farms as those having 12.5

acres or over 5 hectares. Using Indian data, Yotopoulos and Lau, 1973, and Sidhu, 1974 classified “large”

farms as those with at least 10 acres (i.e., 4 ha). In Nigeria, Olayide et al., 1980 described small farms as

those farm holdings less than 10 hectares. In a similar study in Cote d’Ivoire, Adesina and Djato, 1996

defined large farms as farms of at least 4 hectares. Ohajianya and Onyenweaku, 2002, in a similar study,

defined large farms as farms of at least 4 hectares. In this study, large scale farmers were defined as

farmers that have more than 3.04 ha (i. e.,7.50 acres) of land. This study investigates the productivity,

technical inefficiency and their determinants among different rice farmers in Bangladesh. Necessary

policies are suggested based on the findings of this study.

Methodology:

A multi-staged sampling technique was employed to select a representative sample in this study. Five

divisions were selected since they are the major rice growing divisions in Bangladesh. Forty eight

upazilas were selected proportionately from the total rice areas of those five divisions. Unions and

villages were selected randomly from the list of those. Then irrigated rice growing households were

selected randomly. Based on the category of farm size, there were five categories of farmers identified.

They were landless (<0.20 ha), marginal (0.20 – 0.40 ha), small (0.40 – 1.01 ha), medium (1.01 - 3.03 ha)

and large (>3.04 ha) and their sample size were 17, 350, 357, 69 and 3 respectively. Data were collected

using structured and validated questionnaire administered on the farm families using Surveybe CAPI



software during the 2013 boro rice season by trained enumerators under the supervision of the

researcher. Data were collected on the socioeconomic characteristics of the farmers, production

activities in terms of inputs, outputs and their prices.

The methods to estimate farm household technical efficiency include parametric and

nonparametric methods, i.e. stochastic frontier analysis (SFA) introduced by Farrell (1957) and

data envelopment analysis (DEA) introduced by Charnes et al (1978). There are debates on

which one is more appropriate approach for the technical efficiency estimation. DEA, the non-

parametric approach, does not impose the restrictions the production function and distribution

assumption of error terms and is suitable to deal with the multiple outputs (Chavas et al, 2005).

However, the measurement errors can influence on the shape and positioning of the estimated

frontier largely (Coeli and Battese, 1996). Instead, in SFA, the two error terms, i.e. technical

inefficiency and random error term are specified explicitly (Coeli and Battese, 1996; Battese &

Coelli, 1995). In this study, focus will be on only one single specific crop and SFA would be

applied which is suitable for this research.

To apply SFA approach, it actually includes two regressions. The first one is to estimate the

technical efficiency coefficient based on the input-output data at farm level by using production

function and the second one is to evaluate the effects of determinants for inefficiency in different

payment systems. It is proposed that one-stage regression is more appropriate than the two

separate stage regression because the assumption of technical inefficiency coefficient is not

hypothesized to be independent and affected by the covariates in the efficiency model (Battese

and Coelli, 1995). One-stage approach is thus applied in the study, i.e. a stochastic production

frontier based on the factors of production was estimated simultaneously with the determinants

of inefficiency using maximum likelihood estimate following the methodology of Battese and

Coelli (1995). We use here Tobit model since the technical inefficiency data are censored and its

values are between 0 to 1.

Kernel Density Estimation (KDE)

In statistics, the univariate kernel density estimation (KDE) is a non-parametric way to estimate

the probability density function f() of a random variable X, is a fundamental data smoothing

problem where inferences about the population are made, based on a finite data sample. These



techniques are widely used in various inference procedures such as signal processing, data

mining and econometrics. It is used for estimating a density of probability and its derivatives

with a bandwidth selector. The yield data in our survey supports the following distribution. This

normal distribution of yield is useful to explain the inefficiency issue in different payment

systems.

Figure 1. Kernel density estimation of yield

Technical efficiency and the determinants of technical inefficiency are calculated by first

estimating a score for technical efficiency and then that score is used to determine influencing

factors. The output or yield of the stochastic production frontier is considered to be a function of

input variables (Aigner et. Al., 1977). Following Coelli et al., 1998, a stochastic production

function is specified as:

Yi=ƒ(Xi)exp ( ϵi) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...... ... ... (1)



Where Yi is the yield for farmer i, Xi are the input variables used by the farmer i, ϵi is the error

term, and ƒ is the functional form to be specified. The error term is assumed to be composed of

two separate errors, such that:

ϵi =vi - ui ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...(2)

Where vi is the stochastic error term with a two-sided noise component and ui is the one-sided

error component. Within the error term, vi, accounts for random noise that is outside of the

farmers’ control as well as measurement errors. The second component, ui, captures the absolute

distance between farmers’ yield and production possibility frontier. The first component, vi is

assumed to be normally distributed (v~N(0, σ2
v) with a mean of zero and variance of σ2

v. The

second component, ui is representing technical inefficiency (TI). If u=0, production lies on the

stochastic frontier and production is technically efficient; if u>0, production lies below the

frontier and is inefficient. Lastly, the two components of the error term are assumed to be

independent of each other.

Farmers’ individual technical efficiency scores are estimated to show the difference in the actual

production to the potential production for each farm (Greene, 1980). The measurement of the

technical efficiency is constructed using the observed deviation of output from individual

farmers and the production frontier, the most efficient point obtainable by the farmers. Farmers

with observed technical efficiency that lies on the production frontier are considered to be

perfectly efficient. Conversely, any farmers with technical efficiency scores that are lying below

the production frontier are considered to be technically inefficient. The index of technical

efficiency is specified as:

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...  ... ... ... ... ... (3)

Both descriptive and inferential statistics were used to analyze the pattern of inputs of production

and the socioeconomic characteristics of the farm households. The Cobb-Douglas and Translog

functional form will be used for this study. The empirical model of the Cobb-Douglas functional

form (Gujarati, 1995) is as follows:
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where:

ln = natural logarithmic form

Yi = rice production (yield) in tons ha-1

k = number of input variables

β0
= intercept or constant term

βj = unknown parameters to be estimated

Xij = vector of production inputs (j) of the farmer i

vi = random error term

ui = inefficiency component

Translog production function:
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We can generalized it in the following form like as,

lnYi = β0 + β1lnX1i + β2lnX2i +0.5 β11(lnX1i)
2 + 0.5 β22(lnX2i)

2 + 0.5 β12lnX1ilnX2i + vi - μi .......(6)

While the technical inefficiency model is given as:
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Where,

μi = technical inefficiency

δ0 = intercept or constant term

δj = parameters to be estimated

Zj = determinants of inefficiency



To determine the appropriate functional form for the model specification, a likelihood ratio test

(LR test) is conducted. This test compares the translog function and the Cobb-Douglas. The null

hypothesis is H0: Cobb-Douglas functional form and H1: Translog functional form. We run both

the model and LR test as well. The test rejects the null hypothesis, H0. This LR test proves that

the translog functional form for estimating inefficiency with the current data set is the

appropriate form of model.

Table 1. Model selection test results

Hypothesis and decision Criteria LR value and probability

H0: Cobb-Douglas Likelihood-ratio test LR chi2(58) =     92.95

H1: Translog (Assumption: Cobb_Douglas
nested in Translog)

Prob > chi2 =    0.0024

Decision: Null hypothesis is
rejected with ≤ 1 percent level of
significance

Translog is the appropriate form for this data set.

Given a flexible and interactive production frontier for which the translog production frontier is

specified, the farmer specific technical efficiency (TE) of the ith farmer is estimated by using the

expectation of ui conditional on the random variable ei as shown by Battese (1992). That is,

So that 0≤TE≤1. Farm specific technical inefficiency index (TI) is computed by using the

following expression:

In the production function, zero values were also observed in cases where farmers did not apply

other fertilizer. As proposed by Battese (1997), the following methodology was applied to

account for the zero values.

niVXXDY jjjjj ,...,2,1,*lnln)(ln 22112000   … … … … … … … ……(10)

where,

D2j = 1 if X2j = 0 and D2j = 0 if X2j > 0; and X2j* = Max (X2j , D2j)

The model in equation 3 implies that X2j*= X2j is true for X2j > 0 but if X2j = 0 then X2j*= 1.



Empirical models specification: Cobb-Douglas

lnYi =β0 + β1lnX1i + β2 lnX2i + β3 lnX3i + β4lnX4i + β5lnX5i + β6lnX6i + β7lnX7i + β8lnX8i + β9

lnX9i + β10lnX10i + β11lnX11i + vi - μi ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... (11)

Where,

Yi = Yield (kg)

X1i = Seed (kg/ha)

X2i = Human labour (man-day/ha)

X3i = Tillage (hour/ha)

X4i = Irrigation (hour/ha)

X5i = Chemical fertilizer (kg/ha)

X6i = Insecticide & herbicides (kg or lit/ha)

X7i = Other fertilizer dummy (1=use other fertilizer, 0= otherwise)

X8i = Other cost dummy (1=use other cost, 0=otherwise)

X9i = Share payment dummy (1=under share payment, 0=otherwise)

X10i = Fixed charge dummy (1=under fixed charge payment, 0=otherwise)

X11i = Two part dummy (1=under two part tariff payment, 0=otherwise)

We have used own payment system as reference case.

β0 = Constant term,

β1-11 = Unknown parameters to be estimated from the Cobb-Douglas production function

ϵi = Error term

Empirical models specification: Translog

lnYi = β0 + β1lnX1i + β2lnX2i +0.5 β11(lnX1i)
2 + 0.5 β22(lnX2i)

2 + β12lnX1ilnX2i + ... + vi - μi ...(6)



Table 2. List of variables and interaction factors are as follows:

Input variables Interaction factor variables

1. Seed 12. 0.5*Seed2, 13. Seed*Human labour, 14. Seed*Tillage, 15. Seed*Irrigation,
16. Seed*Chemical fertilizer, 17. Seed* Insecticide & herbicides, 18. Seed*
Other fertilizer dummy, 19. Seed* Other cost dummy, 20. Seed* Share
payment dummy, 21. Seed* Fixed charge dummy, 22. Seed* Two part dummy

2. Human labour 23. 0.5*Human labour2, 24. Human labour*Tillage, 25. Human
labour*Irrigation, 26. Human labour*Chemical fertilizer, 27. Human
labour*Insecticide & herbicides, 28. Human labour*Other fertilizer dummy,
29. Human labour*Other cost dummy, 30. Human labour*Share payment
dummy, 31. Human labour* Fixed charge dummy, 32. Human labour*Two
part dummy

3 . Tillage 33. 0.5*Tillage2, 34. Tillage*Irrigation, 35. Tillage*Chemical fertilizer, 36.
Tillage*Insecticide & herbicides, 37. Tillage* Other fertilizer dummy, 38.
Tillage*Other cost dummy, 39. Tillage* Share payment dummy, 40.
Tillage*Fixed charge dummy, 41. Tillage* Two part dummy

4. Irrigation 42. 0.5*Irrigation2, 43. Irrigation* Chemical fertilizer, 44. Irrigation*
Insecticide & herbicides, 45. Irrigation*Other fertilizer dummy 46.
Irrigation*Other cost dummy, 47. Irrigation* Share payment dummy, 48.
Irrigation*Fixed charge dummy, 49. Irrigation* Two part dummy

5. Chemical fertilizer 50. 0.5*Chemical fertilizer2, 51. Chemical fertilizer*Insecticide & herbicides,
52. Chemical fertilizer*Other fertilizer dummy, 53. Chemical fertilizer*Other
cost dummy, 54. Chemical fertilizer* Share payment dummy, 55. Chemical
fertilizer* Fixed charge dummy, 56. Chemical fertilizer* Two part dummy

6. Insecticide & herbicides 57. 0.5*Insecticide & herbicides2, 58. Insecticide & herbicides* Other fertilizer
dummy, 59. Insecticide & herbicides*Other cost dummy, 60. Insecticide &
herbicides* Share payment dummy, 61. Insecticide & herbicides* Fixed
charge dummy, 62. Insecticide & herbicides* Two part dummy

7. Other fertilizer dummy 63. Other fertilizer dummy*Other cost dummy, 64. Other fertilizer
dummy*Share payment dummy, 65. Other fertilizer dummy*Fixed charge
dummy, 66. Other fertilizer dummy*Two part dummy

8. Other cost dummy 67. Other cost dummy*Share payment dummy, 68. Other cost dummy* Fixed
charge dummy, 69.  Other cost dummy*Two part dummy

9. Share payment dummy -
10. Fixed charge dummy -
11. Two part dummy -

Censored data distribution:

A very common problem in microeconomic data is censoring of the dependent variable. When

the dependent variable is censored, values in a certain range are all transformed to a single value

range. Some examples that have appeared in the empirical literature are household purchases,

farm experimental affairs, hours worked by women in farms and industries, household



expenditure on various commodities, etc. Each of these studies analyzes a dependent variable

that is zero for significant fraction of the observations. Conventional regression methods fail to

account for the quantitative difference between limit (zero) observations and non-limit

(continuous) observations. The relevant distribution theory for a censored variable is similar to

that for a truncated one. We begin with the normal distribution, as much of the received work has

been based on an assumption of normality. We also assume that the censoring point is zero,

although this is only a convenient normalization. In a truncated distribution, only the part of

distribution above y=0 is relevant to our computations. To make the distribution integrate to one,

we scale it up by the probability that an observation in the un-truncated population fails in the

range that interests us. When data are censored, the distribution that applies to the sample data is

a mixture of discrete and continuous distribution.

To analyze this distribution, we can define a new random variable y transformed from the

original one, y*, by

y = 0 if y* ≤ 0

y = y* if y* > 0

The distribution that applies if y*~N[μ, σ2] is Prob(y=0) = Prob(y*≤ 0) = ϕ(-μ/σ) = 1-ϕ(μ/σ), and

if y* > 0, then y has the density of y*. This distribution is a mixture of discrete and continuous

parts. The total probability is one, as required, but instead of scaling the second part, we simply

assign the null probability in the censored region to the censoring point, this case, zero (Greene,

2006).

Tobit model setup:

Wooldrige (2002, 517-520) makes clear, censored regression applications fall into two

categories. They are: 1. Censored regression application, and 2. Corner solution models. Both

types of application- the censored regression application and corner solution application lead us

to the standard censored Tobit model with type-1 (Sigelman and Zeng, 1999).

The structural equation in Tobit model (Tobin, 1958) is

Y*
i = Xiβ + ϵi



Where ϵi~ N(0, σ2). Y* is a latent variable that is observed for values greater than τ and censored

otherwise. The observed y is defined by the following measurement equation

y* if y* > τ
yi =

τy if y* ≤ τ

In the typical Tobit model, we assume that τ = 0 i.e. the data are censored at 0. Thus, we have

y* if y* > 0
yi =

0 if y* ≤ 0
Marginal effects for Tobit model is

Thus the reported Tobit coefficients indicate how a one unit change in an independent variable xk

alerts the latent dependent variable.

It is important to realize that estimates the effect of x on y*, the latent variable, not on y. The

Tobit model depends on the correctness of the normality assumption.  The interpretation of the

parameters becomes more difficult than in the linear model. We need to compute partial effects

of changing x as we have done for the Logit and Probit model. These partial effects depend not

only on β but also on x and σ. Stata 12 version can carry out these calculations automatically.

Empirical model for the determinants of technical inefficiency:

lnYi =β0 + β1lnX1i + β2 lnX2i + β3 lnX3i + β4lnX4i + β5lnX5i + β6lnX6i + β7lnX7i + β8lnX8i + β9

lnX9i + β10lnX10i + μi ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... (11)

Where,

Yi = Technical inefficiency [Censored values, ll(o) & ul(1)]

X1i = Sandy loam soil type dummy (1=sandy loam soil, 0=otherwise)

X2i = Clay loam soil type dummy (1=clay loam soil, 0=otherwise)



X3i = Clay soil type dummy (1=clay soil, 0=otherwise)

X4i = Medium high land type dummy (1=medium high land, 0=otherwise)

X5i = high land type dummy (1=high land, 0=otherwise)

X6i = Farm size (ha)

X7i = Kinship dummy (1=kinship, 0= otherwise)

X8i = Family head age (year)

X9i = Family head education (year of schooling)

X10i = Distance from plot to tubewell (meter)

X11i = Asset position of the farmer (Tk.)

X12i = Loan dummy (1=loan receiver, 0=otherwise)

μi = Error term

Results discussion:

The generalized likelihood ratio test is used here which is commonly used in stochastic frontier

analysis to determine the appropriate functional form (Battese and Coelli 1988, 1992 Coelli

1995, Battese and Hassan 1998). We use a procedure to determine the functional form. We test

the null hypothesis that Cobb-Douglas half normal is nested under the translog half normal

function. We fail to reject the null hypothesis. We estimate equation (5) using the translog half

normal function. The estimate of the stochastic frontier shows the best practice performance of

HYV boro production under the available technologies which was first represented by a

production function, such as Cobb-Douglas and constant elasticity of substitution (CES) place

restriction on elasticity of substitution (Cobb and Douglas, 1928; Arrow, et al. 1961). The model

goodness of fit is well with the correctness of the specified distributional assumptions. Here log

likelihood is -9.75 and Wald chi-squared at 69 degrees of freedom is 121.52 which are

significant at less than 1 percent level of significant. LR test of sigma_u=0 i.e. probably testing

whether an estimated variance component (something that is always greater than zero) is

different from zero. The test says it is significantly different from zero at less than 1 percent level

of significance. The mean value of technical efficiency is 0.77 is higher than 0.75, 0.62, 0.47

found by Kumbhakar (1994), Huaiyu, et al., (2012) and Al-hasan, (2012) respectively.  Our



technical efficiency level is lower than 0.83, 0.96, and 0.89 which were found by Huang & Bagi

(1984), Parikh & Shah (1994), Tadesse & Krishnamoorthy (1997), respectively.

The variables those have significant influences on yield are two part payment dummy,  seed-

tillage, seed-irrigation, seed-two part payment dummy, labour-irrigation, labour-chemical

fertilizer, tillage, tillage-other fertilizer, tillage-two part payment dummy, irrigation other

fertilizer, irrigation-share payment dummy and chemical fertilizer-other fertilizer dummy. Most

of the coefficients of those variables or interactive factors are significant at 1 & 5 percent level of

significance. Different cross product or interaction factors have robust influence on yield which

means the interaction factors need to be taken care intensively to explain the yield variation of

the farmers. Irrigation and tillage have linked with payment system and it seen that the share

crop payment dummy has significant negative influence on technical efficiency of HYV boro

rice production.

Table 3. List of significant variables in the translog model



Number of observation =958
Wald chi-square =121.52
Probability > chi-square = 0.0001
Log likelihood = -9.745668

Input variables and integration variables Coefficient. Std. Err. z P>z
Two part dummy -1.028** 0.437 -2.350 0.019

Seed-tillage -0.080*** 0.027 -2.960 0.003
Seed-irrigation 0.033** 0.016 2.000 0.046

Seed-two part tariff dummy 0.057* 0.032 1.780 0.075
Labour-irrigation 0.076** 0.037 2.090 0.037

Labour-chemical fertilizer 0.112** 0.068 1.640 0.102
Tillageha2 -0.063* 0.038 -1.640 0.101

Tillage-other fertilizer -0.099** 0.037 -2.700 0.007
Tillage-two part tariff dummy 0.130*** 0.046 2.820 0.005

Irrigation-other fertilizer -0.039* 0.022 -1.780 0.074
Irrigation-share payment dummy -0.069** 0.034 -2.050 0.040
Chemical fertilizer-other fertilizer 0.107** 0.050 2.150 0.031

Constant term 12.232 1.633 7.49 0.00
/lnsig2v -4.374 0.159 -27.560 0.000
/lnsig2u -1.888 0.073 -25.940 0.000
sigma_v 0.112 0.009 -
sigma_u 0.389 0.014 -
sigma2 0.164 0.010 -
lambda 3.466 0.020 -

Likelihood-ratio test of sigma_u=0: chibar2(01) = 2.3e+02Prob>=chibar2 = 0.000
*, **, *** significant at 10%, 5% and 1% level of significance

Interpretation of Technical Efficiency and inefficiency Scores:

Computationally, the technical efficiency scores relate to the distance of a farmer’s current

production point from its respective benchmarking frontier of HYV rice production. The exact

interpretation is specific to the model orientation. For the output oriented model, the efficiency

scores measure the volume of output that a farmer is currently producing, relative to the

maximum volume it could potentially produce from its current inputs. For example, an

output-oriented efficiency score of 77 per cent would mean that a farm is producing 77 per cent

of its full output potential. This would be interpreted to mean that the farmer is producing at

23 per cent below its maximum capacity or that it has the potential to increase its current output



level by 23 per cent without needing to increase its resources. This 23 is nothing but the technical

inefficiency score of a HYV rice producing farmer.

Table 4. Division-wise technical efficiencies and inefficiencies of the farmers under different
payment systems

Division
name

Technical efficiency level Technical inefficiency level

Own
payment

Crop
share

Fixed
charge

Two part
tariff

Own
payment

Crop
share

Fixed
charge

Two part
tariff

Chittagong 0.568 0.609 0.661 0.662 0.432 0.391 0.339 0.338

Dhaka 0.750 0.736 0.769 0.745 0.250 0.264 0.231 0.255

Khulna 0.793 0.818 0.768 0.780 0.207 0.182 0.232 0.220

Rajshahi 0.765 0.774 0.792 0.844 0.235 0.226 0.208 0.156

Rangpur 0.792 0.000 0.773 0.791 0.208 0.000 0.227 0.209

All 0.767 0.763 0.768 0.766 0.233 0.237 0.232 0.234



Division-wise inefficiency level:

Inefficiency levels are also presented at different divisions of Bangladesh. It is seen that the

inefficiency is higher at own payment system in Chittagong division. Average inefficiency is the

lowest in two part payment system in Rajshahi division and it is followed by the Khulna

division. In Rangpur division, we do not have information about share payment system. Still the

average inefficiency is lower in crop share system.

Overall technical inefficiency level:

The inefficiency levels of the farmers are higher between the ranges of 0.1 to 0.4. Most of the

farmers (52%) are between 0.1 to 0.4 inefficiency levels. It can be mentioned here that

magnitudes of the inefficient farmers are lower and also means that they not so far from

technically efficient farmers.
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Figure 4. Frequency distribution of technical inefficiency

Inefficiency level under different payment systems:

It can be seen that the distribution of inefficiencies are different among the payment systems.

The range is lower in share payment system but higher inefficiency lies on that payment method.

In two part tariff payment system, most of the farmers have lower inefficiency. The patterns are

similar in fixed payment system.
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Figure 5. Frequency distribution of technical inefficiency in different payment systems

Ranking of inefficiency in different payment systems:

The following table shows that the technical efficiency ranking is the lowest in share payment

system of irrigation but the highest in fixed charge system and it is because of the efficient inputs

use other than irrigation by the users. Due to the same reason, the TE is higher in own payment

system. We can see almost the opposite scenario in inefficiency ranking in different payment

systems. Technical inefficiency in crop share payment system is the highest in ranking among

other payment systems (Table 3).
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Table 5. Technical efficiency, inefficiency and rank under different payment systems

Payment methods Technical
efficiency

TE Rank Technical
inefficiency

TI Rank

Own payment 0.767 2 0.232 3

Crop share 0.763 4 0.237 1

Fixed charge 0.768 1 0.231 4

Two part tariff 0.766 3 0.234 2

All 0.767 - 0.233 -



Socioeconomic influence on HYV rice production inefficiency:

A total of ten socioeconomic and farm characteristic variables are investigated as the

determinants of technical inefficiency. There are four major soil types are mentioned by the

farmers where they grow HYV boro rice. Three dummies are taken to capture four types of soil.

As before, loam soil is the reference soil type. The dummies are sandy loam soil, clay loam soil

and clay soil. Loam soil type is captured by the constant term. It is determined that sandy loam

soil type has positive significant influence on technical inefficiency of HYV boro production. It

is seen that education of the respondent, kinship and asset position of the farmers have

significant negative influence on technical inefficiency which are quit logical in the practical

situation. Here respondent’s education is highly significant meaning is that we need to take

special care for education to reduce the technical inefficiency in producing HYV boro rice and it

can increase our yield more.



Table 6. Determinants of technical inefficiency in irrigated HYV boro rice by using Tobit model

Determinants of
inefficiency

Coefficients Std. Err. t P>t

Sandy loam soil type dummy 0.0209** 0.0105 1.99 0.047

Clay loam soil type dummy 0.0163 0.0132 1.23 0.219

Clay soil type dummy -0.0058 0.0115 -0.51 0.611

Medium high land type dummy 0.0121 0.0091 1.33 0.185

High land dummy 0.0082 0.0134 0.62 0.538

Farm size (ha) -0.0068 0.0066 -1.03 0.301

Respondent’s age 0.0162 0.0153 1.06 0.29

Respondent’s education -0.0128*** 0.0046 -2.78 0.006

Kinship dummy -0.0178* 0.0095 -1.88 0.061

Distance from plot to tubewell 0.0021 0.0024 0.89 0.373

Asset position of the farmer -0.0083* 0.0049 -1.7 0.089

Loan dummy 0.0003 0.0084 0.03 0.975

*, **, *** significant at 10%, 5% and 1% level of significance

Conclusions:

It has been mentioned in the resource allocation discussion that the efficiency varies among the

payment systems of irrigation water. In this section it is also found that the technical efficiency

and inefficiencies are different among the payment methods of irrigation. It is seen that the

technical inefficiency is higher in share payment system which needs to be taken care for

increasing production of HYV boro rice. Tabular, model and graphic analyses show the same

natures of the results that the crop share payment system. The Tobit model shows the major

determinants of those inefficiencies. The statistically significant factors are sandy loam soil type,

education, kinship and asset position of the farmers. The sandy loam soil type has positive

significant influence on technical inefficiency of HYV boro production. It is also seen that

kinship and education of the farmers have significant negative influence on technical inefficiency



which are quit logical in the HYV boro rice production. Particularly we need to emphasis the

education level of the farmers since it is the highly significant factors for reducing inefficiency of

rice production. Other than own payment system, cash payment is better in terms of efficiency

consideration and two part tariff payment system is the most feasible payment where farmers are

less inefficient in producing HYV boro rice by using groundwater irrigation and the users have

more freedom to use irrigation according to their crop needs. It can be also a situation where

farmers will see the benefits of using AWD in their irrigation field. It will reduce irrigation cost

and will also reduce the pressure of using groundwater irrigation in Bangladesh.


