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1. INTRODUCTION 

Bangladesh, a predominantly agrarian society, is striving hard to industrialize the 

economy by mobilizing resource from within and outside its geographic 

boundary. The recent years have seen significant improvement in the relative 

share of industry in the national economy. Relative shares of  industry in Gross 

Domestic Product were 16.3  20.9 and 25.5 percents in the years of 1980, 1990 

and 2002 respectively (ADB, 2003). Industrial growth has also been more or less 

steady despite the ongoing recession in the world economy. The average growth 

rate of industrial output was 6.56 percent during 1997 to 2001 (ADB,2003).  

Hence, forecasting industrial output is an important issue in analyzing the 

economic performance of Bangladesh which is showing a steady improvement in 

the relative share of industrial output in GDP. In fact, this is equally important for 

developed industrialized economies as well as for the LDCs. Actually, industrial 

sector is important in explaining aggregate fluctuation of the economy. In 

addition, forecasts of industrial output can be useful in more general forecasting 

models.  

As far as Bangladesh economy is concerned, to the knowledge of the authors, no 

satisfactory forecasting model for industrial output in Bangladesh has yet been 

developed. At least one attempt however, is made to explain the behavior of the 

industrial output on sector basis (Dutta, 1993), which does not attempt to forecast 

 

 



 

 

the future behavior explicitly and also not substantiated by sophisticated 

econometric analysis. A number of attempts are made for other countries viz. for 

Italy (Bruno & Lupi, 2003), for the UK (Simpson et el, 2000) etc that use mainly 

univariate models and provide satisfactory forecast results. In this light, this paper 

is an attempt to develop a univariate forecasting model for Industrial output in 

Bangladesh. Such a univariate model provides a more sophisticated method of 

extrapolating time series in that they are based on the notion that the series that is 

to be forecasted has been generated by a stochastic process, with a structure that 

can be characterized and described. As we know, a time-series model provides a 

description of the random nature of the process that generates the sample of 

observations under study, which is given not in terms of a cause and effect 

relationship (as would be the case in a regression model) but in terms of how that 

randomness is embodied in the process. Hence, our objective is to develop a 

model that explains the movement of time series data of industrial output in 

Bangladesh by relating it to its past values and to a weighted sum of current and 

lagged random disturbances. 

The structure of the rest of the paper is as follows: the Methodology Section 

explains general ARMA modeling as well as the procedures used to derive the 

particular specifications adopted. The following section tests the stationarity of 

the data series employed. The Model Specification Section intends to select an 

appropriate specification from various rival models. Substantive results are 

presented in the following section that shows both forecast results and their 

forecasting performance. Finally some conclusions are presented. 
 

2. OBJECTIVES AND METHODOLOGY 

The main objective of this study is to specify a short run forecasting model of 

industrial output within the ARMA framework. Our study is based on the 

monthly data of industrial output index of Bangladesh covering the period 

January 1992 to November 2002. These data are taken from the IFS CD Rom 

Version (September 2003). We have chosen 1992 as the starting year to avoid 

any possible structural break due to major political regime change in early 1990s. 

On the other hand we couldn’t use the most recent industrial output data, as data 
were not available beyond November, 2002. We have used the data from January 

1992 to December 2001 for the estimation purpose and the data for remaining 

eleven months for out of sample forecasting purpose. 

An ARMA (Autoregressive-Moving average) model has the general form: 
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where yt is a stationary variable, C is constant and tε is the error term. It can be 

seen from equation [1] that ARMA models consist of two main parts; the first is 

the Autoregressive part (AR) that includes lag values of the dependent variable 

and the second is the Moving Average part that contains the lag values of error 

terms. In fact, AR(p) and MA(q) can be treated as the restricted ARMA model. 

For an AR(p) model ...   ...321 0 ,,for ii ==  and for an MA(q) model 

.   0 iallfor=  The main task of these types of model is to set the appropriate 

lag orders for AR and MA terms. In this paper we will follow standard Box-

Jenkins procedure to specify the appropriate model. This procedure involves the 

following steps: 

Step-1: Check the stationarity of the industrial output series, and, if 

necessary, transform the series to induce stationarity. 

Step-2: From the examination of the data series as well as the 

autocorrelation and partial autocorrelation functions of the series 

(transformed series for nonstationary case) choose a few ARMA 

specifications for estimation and testing in order to arrive at a preferred 

specification with white noise residuals. 

Step-3: Calculate forecasts over a relevant time horizon from the 

preferred specification. 

3. STATIONARITY CHECK 

Figure 1 shows the graph of Industrial output indices for the period between 

1992:01 and 2002:11. 



 

 

Figure 1: Industrial Output Index 
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In the above figure what we notice at the first glance is the presence of a linear 

time trend. Industrial production is increasing over time. However, it is very 

difficult to get any idea about the stationarity of the series from this graph. Like 

many other macroeconomic monthly series, the industrial output series exhibits 

some seasonality. This is evident from the peaks roughly observed in every year 

ending.  

To check the stationarity of the series we will use Augmented Dickey Fuller 

(ADF) test of the unit root. The unit root tests are mainly based on the following 

AR(1) process: 

   
'

t t-1 tY Y t= + X δ+      [2] 

where tX  is the vector of optional exogenous regressors which may consist of a 

constant, or a constant and a trend;   and  δ  are parameters to be estimated, and  

tε  is assumed to be white noise. If 1  , Y is a nonstationary series and the 

variance of Y increases with time and approaches infinity. If 1  , Y is a 

stationary series. Thus, the hypothesis of stationarity can be evaluated by testing 

whether the absolute value of   is strictly less than one.  

The ADF test uses the modified version of [2], which suggests estimating the 

following equation: 



 

 

'

t t-1 1 t 1 2 t 2 q t q tY Y Y Y ... Y− − −  +  +  + +  t= + X δ +        [3] 

where tY  denotes the industrial output and t t t 1Y Y Y − = − , 1 = − and the 

null hypothesis H0: 0 =  is tested against the alternative, H1: 0   based on 

the ADF-t statistic. We will use the critical values provided by Mackinnon (1996) 

to evaluate the null hypothesis. Observing figure 1, we include a constant and 

linear time trend as regressors in the test equation. Lag order (0 in this case) of 

the difference terms is determined by the Modified Akaike Information Criterion 

(MAIC). The result of the ADF unit root test is shown below (t-statistics are 

shown in the parentheses): 

 

 

 

 

The significance of all the coefficients and the value of DW statistic close to 2 

indicate the correct specification of the test equation. The ADF test statistic is 

highly significant. The above results clearly reject the unit root hypothesis. Thus 

we may consider the industrial output series as stationary.  

4. MODEL SPECIFICATION 

Following Box-Jenkins procedure, we first observe autocorrelation and partial 

autocorrelations of the industrial output series. 

Figure 2 shows the autocorrelation function (ACF) and partial autocorrelation 

function (PACF) (up to lag 36) for the industrial output index that covers the 

period 1992:01 to 2001:12. Slowly decaying autocorrelations may give us an 

indication of the nonstationary series. However, the formal ADF test already 

rejected the nonstationarity hypothesis. The wavy pattern of the autocorrelation 

function is an indication of the presence of seasonality in the series.  

 

 

          
t t-1 tY 46.6 0.617Y 0.37trend

          (7.01)  (-7.13)       (6.69)

 − + = +
 

 ADF Test Statistic = -7.13,  P value = 0.000 



 

 

Figure 2: Autocorrelation and Partial Autocorrelation Functions of 

Industrial Output Index 
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The single spike at lag 1 in the partial autocorrelation function suggests an AR(1) 

model. Along with this, positive spike at lag 12 and negative spike at lag 13 hints 

at a multiplicative Seasonal Autoregressive (SAR(12)) model with the following 

specification: 

Model 1:        

 
12

1 t t(1 L)(1 L )Y c  − − = +     [4.1] 

where Yt is the industrial output and t  is the error term. L is the lag operator 

defined as 
i

t t iLY Y         (i 1,2,3,...   ...)−= = . We may rewrite equation [4.1] as 



 

 

12 13

1 1 t t(1 L L L )Y    − − + =      [4.2] 

Now we can see that Model 1 is able to capture the facts of spikes at lag 1, 12 and 

13 of the PACF. Thus we start our experimentation of the model building with 

equation [4.1], the result of which is reported here: 

 

   Estimated Model 1:  

  
12

1 t t(1 L)(1 L )Y c  − − = +  

 Estimates Std. Error t-Statistic Prob. 

C 149.7392 13.67209 10.95218 0.0000 

1  0.349226 0.093125 3.750068 0.0003 

  0.827484 0.050212 16.47982 0.0000 

Adj R2 = 0.86,    

Q Stat for Residuals (p Values are shown in parentheses):  

Lag 6: 5.50     Lag 12: 20.699    Lag 18: 35.738     Lag 24: 49.64 

         (0.239)              (0.023)              (0.003)                (0.001)  

       

All the estimated coefficients are highly significant. High value of R2 also 

suggests very good fit of the model. However, these are not enough to find an 

appropriate model unless the estimated residuals turn out to be white noise. We 

were particularly interested in checking the serial correlation left in the residuals. 

To perform this, we calculate the Ljung-Box Q statistics from the 

autocorrelations and partial autocorrelations of the residual series up to 24 lags. If 

the estimated residuals are serially uncorrelated, the Q statistic for any specific 

lags should be insignificant. Here we report Q statistics for lags 6, 12, 18 and 24. 

We find that Q statistic is decisively significant at lags 12, 18 and 24, which is an 

indication of the presence of serial correlation in the residuals. It implies that 

model represented in equation [4.1] is not adequate and we need to look for a 

little more complicated model. 

If we look at the ACF of the industrial production series, we may observe the 

slowly decaying autocorrelations with the relative peak at lag 12. Thus we may 



 

 

want to include an MA term with single lag 12 along with the AR(1) and 

SAR(12) in our model. This model can be represented as: 

Model 2:                                     

 
12 12

1 t 1 t(1 L)(1 L )Y c (1 L )   − − = + +   [5] 

 The result of which is shown below: 

 Estimated Model 2:  

   
12 12

1 t 1 t(1 L)(1 L )Y c (1 L )   − − = + +  

 Estimates  Std. Error t-Statistic Prob. 

C 943.2226 2845.279 0.331504 0.7409 

1  0.364892 0.091959 3.967986 0.0001 

  0.991984 0.027448 36.14060 0.0000 

1  -0.896867 0.023559 -38.06874 0.0000 

Adj R2 = 0.8919          

Q Stat for Residuals (p Values are shown in parentheses): 

Lag 6: 8.443       Lag 12: 14.23       Lag 18: 18.808       Lag 24: 33.56 

         (0.038)                 (0.114)                 (0.223)                  (0.04) 

 

Q Stat for Squared Residuals (p Values are shown in parentheses): 

Lag 6: 9.526      Lag 12: 13.00       Lag 18: 18.881       Lag 24: 22.086 

         (0.023)                (0.163)                 (0.219)                  (0.395) 

 

 

Compared with the previous model, we can see that estimation of equation [5] 

gives relatively larger coefficients for AR and SAR terms. Nevertheless, all the 

coefficients are highly significant. The significant Q-stats for the residual at lag 6 

and 24, however, still indicate the serial correlation in the residuals. Again, this 

suggests need for re-specification of the model. 

We may now look again at the wavy seasonal pattern of the ACF of the industrial 

output series. It can be seen that every wave has the duration of about six months. 

Thus we introduce multiplicative Seasonal MA term (SMA (12)) along with 



 

 

MA(6) term and multiplicative Seasonal AR (SAR(12)) with AR(1) term in our 

new specification, which can be shown as: 

Model 3:     

 
12 6 12

1 t 1 t(1 L)(1 L )Y c (1 L )(1 L )    − − = + + +   

 [6] 

the estimation results of which are shown below: 

Estimated Model 3:  
12 6 12

1 t 1 t(1 L)(1 L )Y c (1 L )(1 L )    − − = + + +  

 Estimates Std. Error t-Statistic Prob. 

C 1708.259 8959.224 0.190670 0.8492 

1  0.365602 0.092180 3.966170 0.0001 

  0.995816 0.023481 42.40898 0.0000 

1  -0.178433 0.095791 -1.862734 0.0654 

  -0.890753 0.024360 -36.56691 0.0000 

Adj R2 = 0.8957           Q Stat for Residuals (p Values are shown in 

parentheses): 

Lag 6: 1.125       Lag 12: 7.06       Lag 18: 11.489       Lag 24: 27.041 

          (0.57)                 (0.53)                  (0.647)                  (0.134) 

 

Q Stat for Squared Residuals (p Values are shown in parentheses): 

Lag 6: 7.039      Lag 12: 11.45       Lag 18: 19.72       Lag 24: 25.81 

         (0.03)                (0.177)                 (0.139)                 (0.172) 

 

 

This model apparently produces better results. All the ARMA coefficients are 

reasonably significant. Q statistics for the residuals (up to 24 lags) are all 

insignificant, which indicates no serial correlation in the estimated residuals. 

However we may have to deal with different kind of problem indicated by the Q 

statistics of the squared residuals. We see that the Q statistic for the estimated 

squared residual is significant at lag 6. Although not reported here, lag 5 and 7 

also show the significant (at 5% level) Q statistics. This implies the variances of 

the residuals are serially correlated. Stated differently, this may be an indication 



 

 

of the ARCH (Autoregressive Conditional Heteroscedasticity) effect. A series is 

said to have an ARCH effect if its unconditional (long run) variance is constant 

but there are periods in which the variance is relatively high / low. In the graph of 

the industrial output indices in figure 1, we may observe the smaller fluctuations 

of the series prior to the year 1994. There is, however, much more certain 

statistical test for ARCH effect, which is known as ARCH-LM test. In terms of 

the previous model we perform this LM test, and with lag 1, the result is shown 

below: 

 

 

 

 

 

We can reject the null hypothesis of no ARCH at 6% level of significance. 

Thus we may need to incorporate this ARCH effect in our ARMA model 

(equation 5). After some experimentation with the order of ARCH process, we 

finally specify the following generalized ARCH (GARCH, in short) model: 

Model 4: 

12 6 12

1 t 1 t

2 2 2

t 0 1 t 1 2 t 1 3 t

(1 L)(1 L )Y c (1 L )(1 L )

b b b b Y

    

  − −

− − = + + +

= + + +
 [7] 

where 
2

t  denotes the conditional variance of the residual. According to our 

specification, the main difference between model 3 and 4 is that model 3 assumes 

constant variance for the residual but model 4 assumes that the variance of the 

estimated residuals is a function of the news about the volatility of the series in 

the previous period (
2

t 1 − ), last period’s forecast variance ( 2

t 1 − ) and current level 

of Y.  The result of the estimation of this model is shown below. As before all the 

ARMA coefficients are found significant. Now the constant term also turns out to 

be significant which was insignificant in the model with no accommodation for 

ARCH. The coefficients in the variance equation are all also significant. Most 

ARCH LM (1) Test for Model 3: 

2 2

t t 1
ˆ ˆ31.54 0.179
       (0.00)  (0.0651) 
        

  −= +
 

F Statistic = 3.4749 (0.0651)  

nR2 = 3.4272 (0.0641) 



 

 

importantly,  Q statistics for residuals as well as for the squared residuals at any 

lag are insignificant at conventional 5% level. 

Estimated Model 4:        

12 6 12

1 t 1 t

2 2 2

t 0 1 t 1 2 t 1 3 t

(1 L)(1 L )Y c (1 L )(1 L )

b b b b Y

    

  − −

− − = + + +

= + + +
 

 

 Estimates Std. Error z-Statistic Prob.  

C 229.4776 41.19560 5.570439 0.0000 

1  0.472526 0.112462 4.201641 0.0000 

  0.927319 0.026550 34.92758 0.0000 

1  -0.198338 0.105113 -1.886895 0.0592 

  -0.535471 0.089619 -5.974940 0.0000 

        Variance Equation 

b0 318.0190 96.85419 3.283483 0.0010 

b1 0.259426 0.132282 1.961165 0.0499 

b2 -0.694004 0.162457 -4.271923 0.0000 

b3 -1.990113 0.672988 -2.957128 0.0031 

 

Adj R2 = 0.8695                        DW : 2.04 

 

Q Stat for Residuals (p Values are shown in parentheses): 

Lag 6: 3.78       Lag 12: 7.47       Lag 18: 18.62       Lag 24: 28.352 

          (0.15)                (0.48)                (0.18)                  (0.101) 

 

Q Stat for Squared Residuals (p Values are shown in parentheses): 

Lag 6: 4.88       Lag 12: 10.032       Lag 18: 19.996       Lag 24: 24.00 

         (0.09)                 (0.263)                 (0.130)                 (0.242) 

 

 



 

 

The formal ARCH LM test could not reject the no ARCH hypothesis for any lag 

specification (not reported here). Although this model is a quite good one, we can 

still try to find some better model, as some of the Q stats for residuals and 

squared residuals in this model are only marginally insignificant. 

In search of a better model we may return to the model 3 (equation 6) and try to 

incorporate ARCH specification in this model. Note that the calculated Q 

statistics for squared residuals in model 3 are found significant for the lags 4 to 

10. These might be the indication of the presence of ARCH effect.  The formal 

ARCH LM (1) test on this model shows the presence of ARCH effect at 10% 

level of significance. 

 

 

 

 

 

 

The suggested GARCH model is: 

12 12

1 t 1 t

2 2 2

t 0 1 t 1 2 t 1 3 t

(1 L)(1 L )Y c (1 L )

b b b b Y

   

  − −

− − = + +

= + + +
    [8] 

ARCH LM (1) Test for Model 2: 

2 2

t t 1
ˆ ˆ33.65 0.163
       (0.00)  (0.0949) 
        

  −= +
 

F Statistic = 2.8409 (0.0949)        nR2 = 2.8186 (0.0931) 

p-values are in parentheses 

 

 



 

 

The result of the estimation is shown below: 

 

Estimated Model 5:  

12 12

1 t 1 t

2 2 2

t 0 1 t 1 2 t 1 3 t

(1 L)(1 L )Y c (1 L )

b b b b Y

   

  − −

− − = + +

= + + +
 

 Estimate Std. Error z-Statistic Prob.  

C 238.6053 51.59849 4.624270 0.0000 

1  0.516633 0.115334 4.479460 0.0000 

  0.928115 0.031024 29.91637 0.0000 

1  -0.565369 0.095167 -5.940813 0.0000 

        Variance Equation 

B0 334.2981 102.2236 3.270262 0.0011 

B1 0.240220 0.102809 2.336577 0.0195 

b2 -0.721578 0.154760 -4.662564 0.0000 

b3 -2.059769 0.708525 -2.907125 0.0036 

 

Adj R2 = 0.86                     DW = 2.08 

 

Q Stat for Residuals (p Values are shown in parentheses): 

Lag 6: 5.23       Lag 12: 8.18       Lag 18: 17.14       Lag 24: 24.74 

          (0.16)                (0.52)                (0.311)                 (0.258) 

 

Q Stat for Squared Residuals (p Values are shown in parentheses): 

Lag 6: 1.38       Lag 12: 10.429       Lag 18: 19.104       Lag 24: 26.32 

         (0.71)                 (0.317)                 (0.209)                 (0.195) 

 

 

Obviously this model produces the best results so far. All the coefficients in 

ARMA and variance equations are significant. Moreover, the Q statistics of the 

estimated residuals and squared residuals up to lag 24 are not significant at any 

reasonable level of significance. Another advantage of this model over model 4 is 

that this is more parsimonious. However, ultimate model selection will be done 



 

 

based on the forecasting ability of the model. In the next section we will examine 

the forecasting ability of these two models. 

5. FORECASTING 

We have so far introduced five ARMA models for the industrial output of 

Bangladesh. It is already shown that the first three models could not pass the 

diagnostic tests. Model 4 and 5 are the preferred ones where we assume a 

GARCH (1,1,Y) process for the error variance. In model 4 we include a constant, 

AR(1), multiplicative SAR for lag 12 and MA({12}) as regressors. In model 5 we 

retain AR(1) and SAR({12}) and also include MA({6}) with multiplicative 

SMA({12}). It is found that estimated coefficients and their standard errors are 

similar in these two models. It can be noted that these models can explain about 

86% of the total variation in industrial output index. 

As noted earlier, we have estimated these models using the data that cover the 

period between 1992:01 and 2001:12. We retain remaining samples between 

2002:01 and 2002:11 for out of sample forecasting. In the following figures we 

have shown the dynamically forecasted values of industrial output index for these 

eleven months.  



 

 

Figure 3: Forecast of Industrial Production based on Model 4 
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Figure 4: Forecast of Industrial Production based on Model 5 
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The two figures are almost identical. Both the forecasted series roughly mimic 

the actual series. On average, both models under-predict the industrial production 

in the first and third quarters and over-predict in the remaining two quarters. 

However, these two models exhibit slight differences in the magnitudes of the 

forecast errors. The forecasting evaluation based on various forecasting error 

criteria is summarized in the following table: 

 Forecast Evaluation: 

 Model 4 Model 5 

Root Mean Squared Error 4.717268 4.305568 

Mean Absolute Error 3.419541 3.189317 

Mean Absolute Percentage Error 2.293223 2.138738 

Theil Inequality Coefficient 0.015951 0.014500 

Proportions of 

Mean Squared 

Error 

Bias Proportion 0.097331 0.003878 

Variance Proportion 0.000450 0.002392 

Covariance Proportion 0.902219 0.993730 

 

In terms of all basic criteria it is evident that model 5 produces the smaller 

forecast errors. Mean squared error, Mean absolute error and Mean absolute 

percentage error are slightly bigger in model 4. Theil inequality coefficients are 

very close to zero in both model indicating almost perfect fit.  

We also report the components of total mean squared for both models. The bias 

proportion tells us how far the mean of the forecast is from the mean of the actual 

series. The variance proportion tells us how far the variation of the forecast is 

from the variation of the actual series. The covariance proportion measures the 

remaining unsystematic forecasting errors. Note that the bias, variance, and 

covariance proportions add up to one. If the forecast is "good", the bias and 

variance proportions should be small so that most of the bias should be 

concentrated on the covariance proportions. Here we observe that in model 4 bias 

and variance proportions account for about 10 percent, whereas in model 5, these 

two proportions account for only 1 percent. Particularly the bias proportion is 

relatively large (about 9%) in model 4, which indicates that mean of the forecasts 

does a poor job of tracking the mean of the dependent variable. On the contrary, 

in model 5 most of the errors (about 99%) come from the unsystematic sources, 

indicating very good forecast performance. Thus we may treat model 5 as our 

desired forecasting model. 



 

 

6.       CONCLUSION 

In this paper we tried to develop a short run forecasting model of industrial 

production for Bangladesh using the information about the history of industrial 

production. In attempting to do so we introduced several ARMA models and 

based on some diagnostic tests we finally chose two models for forecasting. We 

then showed that between these two models, one model is preferred over another 

for forecasting purpose. Our preferred model suggests an ARMA specification 

with multiplicative seasonal autoregressive term. This model implies that we can 

forecast the industrial output series; at least for few months ahead using the 

information about last month’s industrial output, seasonal variation in the series 

and shocks occurred in the same period of last year. There may exist many other 

variables, which can be used for forecasting industrial output. However, our 

analysis shows that information regarding the history of industrial output alone 

can be very useful in predicting the future values of the series. 
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